数据挖掘十大算法pdf下载 吴信东高清扫描版
- 软件下载
- 0MB
- v1.2.76
- 3
- 2025-11-08
本书的每一章都邀请两位独立审稿人和本书的一位编辑来审核,有的章节在此基础上要在最终定稿前再重审一遍。我们希望这十个算法的遴选能有助于在世界范围推动数据挖掘的应用,激励更多数据挖掘领域的学者去扩大这些算法的影响,探索新的研究内容。
1.1 引言
1.2 算法描述
1.3 算法特性
1.3.1 决策树剪枝
1.3.2 连续型属性
1.3.3 缺失值处理
1.3.4 规则集诱导
1.4 软件实现
1.5 示例
1.5.1 Golf数据集
1.5.2 Soybean数据集
1.6 高级主题
1.6.1 二级存储
1.6.2 斜决策树
1.6.3 特征选择
1.6.4 集成方法
1.6.5 分类规则
1.6.6 模型重述
1.7 习题
参考文献
第2章 k-means
2.1 引言
2.2 算法描述
2.3 可用软件
2.4 示例
2.5 高级主题
2.6 小结
2.7 习题
参考文献
第3章 SVM:支持向量机
3.1 支持向量分类器
3.2 支持向量分类器的软间隔优化
3.3 核技巧
3.4 理论基础
3.5 支持向量回归器
3.6 软件实现
3.7 当前和未来的研究
3.7.1 计算效率
3.7.2 核的选择
3.7.3 泛化分析
3.7.4 结构化支持向量机的学习
3.8 习题
参考文献
第4章 Apriori
4.1 引言
4.2 算法描述
4.2.1 挖掘频繁模式和关联规则
4.2.2 挖掘序列模式
4.2.3 讨论
4.3 软件实现
4.4 示例
4.4.1 可行示例
4.4.2 性能评估
4.5 高级主题
4.5.1 改进Apriori类型的频繁模式挖掘
4.5.2 无候选的频繁模式挖掘
4.5.3 增量式方法
4.5.4 稠密表示:闭合模式和最大模式
4.5.5 量化的关联规则
4.5.6 其他的重要性/兴趣度度量方法
4.5.7 类别关联规则
4.5.8 使用更丰富的形式:序列、树和图
4.6 小结
4.7 习题
参考文献
第5章 EM
5.1 引言
5.2 算法描述
……
第6章 PageRank
第7章 AdaBoost
第8章 kNN!k-最近邻
第9章 Naive Bayes
第10章 CART:分类和回归树
1、下载并解压,得出pdf文件
2、如果打不开本文件,请务必下载pdf阅读器
3、安装后,在打开解压得出的pdf文件
4、双击进行阅读
免责声明:如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至66553826@qq.com举报,一经查实,本站将立刻删除。